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SUMMARY 

A compressible time-dependent solution of the Navier-Stokes equations 

including a transition-turbulence model is obtained for the isolated airfoil 

flow field problem. The equations are solved by a consistently split linearized 

block implicit scheme due to Briley and McDonald. A nonorthogonal body fitted 

coordinate system is used which has maximum resolution near the airfoil surface 

and in the region of the airfoil leading edge. The transition-turbulence model 

is based upon the turbulence kinetic energy equation and predicts regions of 

laminar, transitional and turbulent flow. Mean flow field and turbulence field 

results are presented for an NACA 0012 airfoil at zero and nonzero incidence 

angles at Reynolds number up to one million and low subsonic Mach numbers. 



INTRODUCTION 

Flow over an isolated airfoil, particularly in the presence of separation, 

is a problem which clearly demonstrates the importance of developing efficient 

and accurate numerical solutions for the Navier-Stokes equations. The isolated 

airfoil problem arises in a variety of practical applications including the 

aircraft wing, control surfaces, propellers and helicopter rotor blades. When 

these components are at small or modest incidence, accurate flow field 

predictions can be obtained by combining inviscid and boundary layer analyses 

in a noniterative mode (Refs. 1 and 2). If the boundary layer-inviscid flow 

interaction remains loca‘lized, accurate flow field predictions can be obtained 

even with small regions of separated flow present (Ref. 3). However, if 

significant regions of separation are present, then the usual boundary layer 

assumption that the pressure distribution about the airfoil is either 

independent of the viscous flow development near the surface or can be 

approximated by a simple inviscid displacement surface, becomes significantly 

in error and a full Navier-Stokes solution which simultaneously predicts the 

pressure and velocity fields is required if valid predictions are to be 

obtained. 

Turning to the helicopter problem in particular, a phenomenon of primary 

interest is that of dynamic stall. Static stall occurs when an airfoil is placed 

at large incidence in a steady stream; dynamic stall occurs when the incidence is 

a function of time. Dynamic stall differs from its static counterpart in two 

major ways. First of all, the maximum lift obtainable under dynamic conditions 

is greater than that under static conditions. Secondly, though under static con- 

ditions lift is uniquely related to incidence, under dynamic conditions stall 

depends upon the time history of motion and has a hysteresis loop associated with 

it. As the helicopter blade travels through the rotor disc, the blade experi- 

ences a varying incidence angle. Over most of the disc the blade will be 

unstalled (i.e., the flow will not contain any large separated regions leading 

to a decrease in blade lift or a generation of large blade moment coefficients); 

however, over a portion of the disc large regions of separated flow may appear 

and over these regions the blade performance will deteriorate. This time history 

dependence of the problem makes dynamic stall prediction a particularly difficult 

task. 
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Despite its complex nature dynamic stall has been the subject of a number 

of theoretical and experimental investigations over the past years. The 

behavior of the leading edge separation bubble has been investigated by both 

Velkhoff, Blaser and Jones (Ref. 4) and Isogai (Ref. 5) and the dynamic stall 

mechanism itself has been scrutinized by McCroskey and Phillipe (Ref. 6), 

McCroskey, Carr and McAlister (Ref. 7) and Parker (Ref. 8). More recent 

investigations have been reported at the AGARD Symposium on Unsteady Aerodynamics 

(Ref. 9). These include the unsteady flow investigation of Saxena, Fejer and 

Morkovin (Ref. 10) and the dynamic stall review paper of Philippe (Ref. 11). 

In addition to the ,large number of experimental investigations, a varieky 

of analytical approaches have focused upon the dynamic stall problem. A review 

of these methods has been given by McCroskey in Ref. 12. Among these approaches 

are inviscid vortex shedding models of Ham and Garelick (Ref. 13) and Bandu, 

Sanger and Souquet (Ref. 14). the data correlation approach of Carta and his 

coworkers (e.g., Ref. 15) and the semi-empirical models of Ericsson and Reding 

(Ref. 16) and Lang (Ref. 17). These were followed by the approaches of Crimi 

and Reeves (Ref. 18), Shamroth and Kreskovsky (Ref. 2) and Kreskovsky, Shamroth 

and Briley (Ref. l), all of which are based upon solutions of fluid dynamic 

equations. More recently, motivated by a desire to relieve some of the 

restrictive assumptions and/or empiricism of earlier methods, attention has 

focused upon Navier-Stokes solutions to the isolated airfoil problem. In an 

early work of this type, Mehta and Lavan (Ref. 19) solved a stream function 

vorticity formulation of the laminar incompressible Navier-Stokes equations to 

predict flow about an impulsively started airfoil. Although this method 

required considerable computer run time, its excellent results convincingly 

demonstrated the practical benefits which could be realized from Navier-Stokes 

solutions. In a recent work Mehta (Ref. 20) used a more efficient numerical 

procedure to solve incompressible laminar flow about an airfoil oscillating 

through incidence regimes in which stall occurs. Another Navier-Stokes analysis 

is that of Wu and Sampath (Ref. 21) and Wu, Sampath and Sankar (Ref. 22) who 

have applied the Wu-Thompson integro-differential formulation (Ref. 23) to the 

impulsively started airfoil problem. In a similar vein Kinney and Cielak 

(Refs. 24 and 25) have applied a vorticity formulation of the Navier-Stokes 

equations to the incompressible airfoil flow field problem and Hodge and Stone 

(Ref. 26) have investigated stalled airfoils again using a Navier-Stokes solution. 
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Although arguments can be made in favor of one of these procedures versus 

the other, it is clear that as a group these efforts have demonstrated that 

application of Navier-Stokes formulations to the airfoil problem is both 

feasible and practical. However, these procedures all have had three major 

limitations associated with them: (i) incompressibility, (ii) laminar flow 

and (iii) lack of generality of airfoil geometry. In regard to the first of 

these items, the preceding analyses all are incompressible and none can be 

extended readily to the compressible case. In regard to the second limitation, 

all these analyses assume the flow to be laminar although presumably this 
assumption can be relieved in a straightforward manner if simple eddy viscosity 

and forced transition concepts are accepted. Insofar as geometry is concerned 

it is noted that coordinate systems for the Navier-Stokes solutions are at 

least one degree more stringent in the coordinate system smoothness than those 

required for inviscid analyses, and hence a straightforward extension of an 

existing coordinate system developed for solution of the inviscid equations may 

not be possible. The Navier-Stokes analyses mentioned above have used a 

coordinate system which either is conformal or is generated from a solution of 

Poisson's equation. The conformal requirement is a very stringent one which 

could make it very expensive or even impossible to investigate many airfoil 

shapes of practical interest by virtue of the resulting coordinates having 

numerous and rapid changes in curvature. The requirement that the coordinate 

system be generated from a solution of Poisson's equation is not nearly as 

constraining as is the requirement that it be confonnal. In principal most if 

not all airfoils of interest could be generated in this manner. However, as 

discussed by Thompson, Thames and Mastin (Ref. 27), in practice convergence 

problems can arise when obtaining a solution to the Poisson equation required 

to generate the coordinate grid. In addition practical difficulties can arise 

in specifying a coordinate grid having high resolution in regions where the 

greatest need for resolution exists; i.e., in regions in which the dependent 

variables change rapidly. As a result of these restrictions, a more general 

coordinate generation system would be a distinct advantage in applying Navier- 

Stokes analyses to the airfoil flow field. 

The problem of eliminating the incompressible assumption from the full 

Navier-Stokes equations for airfoil flow field calculations has been overcome 

by Verhoff (Ref. 28), Deiwert (Ref. 29), Levy (Ref. 30) and Gibeling, Shamroth 
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and Eiseman (Ref. 31). Verhoff applied MacCormack's fully explicit method 

(Ref. 32) to the airfoil problem; however, since the procedure is fully explicit, 

a small time step is necessary to maintain numerical stability as a result of 

the locally refined mesh in the boundary layer and long computer run times 

result. In this regard conditionally stable schemes such as fully explicit 

schemes are not an optimum choice when mesh refinement is required for boundary 

layer definition; in these schemes the allowable marching step size is limited 

by the spatial step size leading to large run times. On the other hand, 

unconditionally (in a linear sense) stable schemes such as some of the implicit 

schemes do not suffer from this characteristic. Both Deiwert's (Ref. 29 and 

Levy's (Ref. 30) analyses are based upon MacCormack's more recent hybrid 

implicit-explicit-characteristics scheme (Ref. 33). By virtue of an enlarged 

stability bound this new procedure is much more efficient than the original 

MacCormack procedure (Ref. 32) for airfoil calculations; however, it does 

present formidable coding problems. 

Another approach to the airfoil problem has been taken by Steger (Refs. 

34 and 35) who has used an approximate viscous analysis in conjunction with 

the coordinate generation procedure of Thompson, Thames and Mastin (Ref. 36) 

to predict laminar flow about an airfoil. The equations solved by Steger 

(Refs. 34 and 35) are not the full Navier-Stokes equations but rather a reduced 

set of equations which retain only those viscous terms important in thin shear 

flows. As a consequence Steger's approach could be invalid when the shear 

layer no longer remained thin or even became significantly inclined to the 

coordinate along which the thin shear layer approximation is made. Both of 

these problems could be particularly significant in the stall problem under 

consideration here. The numerical scheme used by Steger is that given by Beam 

and Warming (Ref. 37). who used the time linearization approach oE Briley and 

McDonald (Ref. 38) in conjunction with the approximate factorization technique 

of D'Yakonov (see Yanenko, Ref. 39) to produce a linearized block implicit 

scheme. More recently Briley and McDonald (Ref. 40) have shown that the Beam 

and Warming (Ref. 37) derivation produces essentially the same consistently 

split linearized block implicit scheme as that developed earlier by Briley and 

McDonald (Ref. 38) using the Douglas-Cunn ADI procedure (Ref. 41) in its 

natural extension to systems of partial differential equations. Gibeling, 

Shamroth and Eiseman (Ref. 31) applied this Briley-McDonald procedure to solve 
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the Navier-Stokes equations for the flow about a cylinder and an airfoil, 

although in this study, as in Refs. 28, 34, and 35, the calculations were 

performed for laminar flow. 

The present effort extends the compressible flow work of Gibeling, Shamroth 

and Eiseman (Ref. 31) and concentrates upon the latter two of the previously 

mentioned problem areas: (ii) turbulent flow and (iii) coordinate generality. 

The procedure adds a turbulence model to the airfoil flow field and demonstrates 

the practicality of constructive nonorthogonal coordinate systems by producing 

calculations about an NACA 0012 airfoil using a constructive coordinate system. 
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LIST OF SYMBOLS 

Except where dimensions are specified, all quantities in the following 
are nondimensional; physical velocities are normalized by ur, density by 

P r, pressure byoru2r, dynamic viscosity by P r' and time by (L/uT) where L 
is the 

a 0 

al 

A 

B 

C 

c1 

c2 

C 
lJ 

DE 
w 

EE 

,F 
ija 

F 

F1 

g ij 

f.3 ij 

G 

G1 

G aij 

reference length. 

Turbulence constant 

Turbulence structural coefficient 

Coefficient in pressure-velocity law 

Coefficient in pressure-velocity law 

Airfoil chord 

Turbulence structural coefficient 

Turbulence structural coefficient 

Turbulence structural coefficient 

Coefficient in tensor form of momentum equation 

Coefficient in tensor form of momentum equation 

Coefficient in tensor form of momentum equation 

Vector in Navier-Stokes equations 

Vector in Navier-Stokes equations 

Metric tensor coefficient 

Inverse metric coefficient 

Vector in Navier-Stokes equations 

Vector in Navier-Stokes equations 

Coefficient in tensor form of momentum equation 



LIST OF SYMBOLS (CONT'D) 

I - 
av 

Coefficient in tensor form of momentum equation 

J - Jacobian 

k - Turbulence kinetic energy 

a - Turbulence length scale 

LIv - Coefficient in tensor form of momentum equation 

Lr - Reference length, taken as airfoil chord 

M - 
av 

Coefficient in tensor form of momentum equation 

P - Pressure 

QvO - 
Coefficient in tensor form of momentum equation 

Re - Reynolds number 

R - Coefficient in tensor form of momentum equation 

Turbulence Reynolds number 

‘a - 
Coefficient in tensor form of momentum equation 

t - Time . 

U - Cartesian velocity 

U r Reference velocity, usually taken as free stream velocity at 
upstream infinity 

V - Cartesian velocity 

i 
V - Contravariant velocity component 

W - Vector in Navier-Stokes equation 

X Cartesian coordinate parallel to chord 
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LIST OF SYMBOLS (CONT'D) 

Y - Cartesian coordinate normal to chord 

Ys - 
Distance normal from surface 

Y0 - General coordinate 

6 - Boundary layer thickness 

$9 6aB - Kronecker delta 

E - Turbulence energy dissipation 

n - General coordinate 

K - Von-Karman Constant 

IJ - Viscosity 

'r Reference viscosity, taken as free stream viscosity at upstream 
infinity 

'T - 
Turbulent viscosity 

F, - General coordinate 

P 

*r 

- Density 

Reference density, taken as free stream density at upstream 
infinity 

cl Prandtl number for turbulence energy transfer 
K 

a - Prandtl number for turbulence dissipation transfer 
E 

T - Shear stress 
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ANALYSIS 

The Governing Equations 

The Mean Flow Equations 

The flow field about an airfoil is governed by the Navier-Stokes equations 

and in conjunction with a suitable turbulence model a solution of the time- 

dependent form of these equations would serve to predict the flow field for both 

laminar and turbulent flows. The form of the equations expressed in the more 

common coordinate systems can be found in standard fluid dynamic texts (e.g., 

Ref. 42 and 43) and the equations themselves have been derived in general 

tensor form by McVitte (Ref. 44) for inviscid flow and by Walkden (Ref. 45) for 

viscous flow. 

When solving the Navier-Stokes equations for flow about airfoils, basic 

decisions must be made concerning the coordinate system to be used and the form 

of equations to be solved. The presence of flow field bounding surfaces which 

do not fall on coordinate lines presents significant difficulties in applying 

boundary conditions and unacceptably large truncation errors could result. One 

method of eliminating this problem transforms the governing equations from the 

usual Cartesian coordinates to a new coordinate system having the airfoil 

surface as a coordinate line; in general, the process may lead to a nonorthogonal 

coordinate system. 

Several candidate forms of the governing equations present themselves for 

solution in the general nonorthogonal case: For example, Gibeling, Shamroth 

and Eiseman (Ref. 31) have solved the set of Navier-Stokes equations in general 

tensor form using the density and the contravariant components of the velocity 

vector as dependent variables. The governing momentum conservation equations 

were the components of the vector equations aligned in the coordinate directions. 

The equations were written in the form 

Continuity Equation 

A!- (pJ) + d$. @J)= 0 
at Y 

(1) 
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Momentum Equation 

dVY 
d (J gai pvi) + Kd$ + Fij{ $-- (pvivj) + Luau - 
at dYW 

a2vY 

+ Da;aybay’ 
+ R, p + Ia,vy + b4aB pv B + Gaij pviv j = Sa 

(2) 

where t is time, J is the Jacobian, gnB is a metric tensor coefficient, vi is 

a contravariant component of velocity in the i 
th coordinate direction, p is 

density, y' is a coordinate and 

K=AJ 

(3) 

a&l OS 
Mafl=-J- 

dYQ 
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- 

B 
I dEav 

av = - 
es 

Jgw”gyB ag;W-L dJ gJ .+ 2 ‘8, 

dY I ay 3 ayv 1 
aoay &J as/? 

L,w, =E,W, +- +-- we oB 

dYB 2 dYQ [ 
g v + gwb ovc - p g’fi 8,” 

I 

where 

EB QY 
1 

(4) 

and A and B relate pressure, velocity and density through the gas law equation 

which is written for constant total temperature as 

P = p[ A + f3gij@] (5) 

In the previous equations g UP are coefficients of the inverse metric tensor, 

p is viscosity, Re is Reynolds number, Latin indices are summed from 1 to 3 

and Greek indices are summed from 0 to 3; v0 is defined as unity. In addition 

all quantities have been made nondimensional; physical velocities have been 

normalized by a reference velocity, ur, 

pressure by orur2, 

density by a reference density, pr, 

dynamic viscosity by pr and time by L/u, where L is a 

reference length. This represents the first candidate form of the equations. 
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Solution of the equations in this form yielded excellent results for flow 

about a circular cylinder (Ref. 31). however, resolution difficulties resulting 

from large truncation error were encountered when the contravariant velocity 

components were used as dependent variables for flow about an airfoil. Therefore, 

the authors of Ref. 31 solved the airfoil flow field by employing the physical 

velocity components in the coordinate direction as dependent variables rather 

than the contravariant components of the velocity vector. This was accomplished 

by noting that in an orthogonal coordinate system the physical velocity 

component u. 
1 

could be expressed in terms of metric data and the contravariant 
i velocity components v as, 

“i = vi- 
/ 

(6) 

where no summation on the repeated index is implied. Therefore v1 was replaced 

in the governing equations by (vi/ qi) G and the equations solved for 

U = 
i vl/ Jpii. When this approach was used, a solution for flow about a 

Joukowski airfoil was obtained without difficulty, and although Eq. (6) is 

restricted to orthogonal coordinates a more general expression of this type 

could be used for nonorthogonal coordinates. This approach represents the 

second candidate form. 

The third candidate form solves a divergence form of the Navier-Stokes 

equations in which the Cartesian velocity components are the dependent 

variables. The governing equations (for cohstant total temperature flow) are 

continuity and the momenta equations in the two coordinate directions; however, 

the independent spatial variables are transformed from the Cartesian*coordinates 

x,y to a new set of coordinates 5,n where 

E = Ux,y,t) 

7 = 17(x ,y,t) 

T =t (7) 
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As shown by Steger (Refs. 34 and 35) the governing equations then become 

aW/D a 

TT+z 1 I + a 3 + F7)x +G3y 
q D D D I 

)I (8) 

where 

Steger used these equations in conjunction with a thin shear layer stress 

approximation to predict an airfoil flow field (Refs. 34 and 35) and this 

approach was carefully considered as a candidate approach in the present 

investigation, although of course modifying the approach,so as to retain the 

full stress tensor appropriate to the Navier-Stokes equations. 

The final candidate form considered in the present investigation also is 

based upon density and the Cartesian velocities as dependent variables and 

continuity and the momenta equations written in the Cartesian directions as 

governing equations. However, in this approach the equations are not solved 

in divergence form but rather are solved in the quasi-linear form 

aw aw dF aG aw dF aG 

ar + Et= + cxx 

I 85 a5 dG, a% I- 
Re 

E- - 
x at + 3x a7) + Q- + TYq- 1 

(10) 
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In deciding upon an approach to use in the present effort, the first 

candidate form was eliminated from consideration because of the resolution 

difficulties it exhibited in the airfoil calculation of Ref. 31. An examination 

of the expressions for I and EB av cLv in Eq. (3) shows that the second candidate 

form requires second derivatives of metric coefficients which in turn requires 

third derivatives of ya with respect to the Cartesian coord,inates x and y. 

In contrast the third and fourth candidate approaches only require evaluations 

of second derivatives of ya with respect to the Cartesian coordinates. This 

requirement of one less degree of differentiability upon the grid coordinate 

transformation represents a distinct advantage for the third and fourth 

candidates, since a less smooth coordinate system is required and can be more 

easily generated. For this reason the second approach was eliminated from 

further consideration. Thus the final choice was narrowed to these latter two 

possible approaches. 

Before proceeding to airfoil calculations, both the third and fourth 

procedures were used to repeat the cylinder flow field calculation previously 

presented in Ref. 31. The results of this calculation are shown in Fig. 1. 

The calculations were run until the maximum change in each dependent variable 

during one body traverse time divided by the dependent variable itself dropped 

to below one per cent. As can be seen in Fig. 1, the results of the fourth 

candidate approach, Eq. (lo), were in good agreement with the three sets of 

results presented in Ref. 31. In contrast the results of the third candidate 

approach showed considerable disagreement with all other results. 

A careful examination of the equations was performed to determine the 

reason for the poor predictions obtained from formulation number three. After 

a term by term examination of the equations, the major difficulty was found to 

reside in the momenta equation pressure gradient terms. In this formulation 

the pressure term is of the form aGp/ag where G is a function of the geometric 

data. The numerical representation of this term is 

dGP ~(t+At)p(t+AC)-G(t-At)P(t-At) 

x- --- 2At 

(11) 
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In the cylinder calculations, p varies from grid point to grid point in the 

fourth significant figure whereas G varies in the first or second significant 

figure. As a result pressure changes were commensurate with the geometric 

data truncation error, an obviously undesirable situation. 

Although the cylinder represents only one case, the resulting poor 

treatment of the pressure gradient term by the third formulation is still 

expected to be a problem in performing airfoil calculations. The problem 

would be somewhat alleviated with increasing Mach number since increasing Mach 

number is accompanied by increasing pressure difference from point to point. 

In addition, the cylinder geometry represents a relatively stringent test of 

formulation three. The airfoil is a much more streamlined body than the 

cylinder with the coordinate curvature being much less pronounced over most of 

the flow field. Nevertheless, large coordinate curvature does occur in the 

airfoil leading edge region. Therefore even if the problems exhibited by the 

strong conservation approach are not as serious in the airfoil case as they 

proved to be in the cylinder case, they are still expected to be present. A 

more detailed discussion of the problem is given by Shamroth and Gibeling in 

Ref. 46. 

Based upon these considerations, the fourth coordinate formulation was 

chosen for the present effort. 

The Turbulence Model 

Since the present effort addresses the problem of turbulent flow, it is 

necessary to specify a turbulence model suitable for this problem. One compli- 

cating factor in hypothesihing and applying a turbulence model for the isolated 

airfoil flow field is that the flow is not turbulent everywhere. Far from the 

airfoil the flow is laminar. In addition, even near the airfoil surface the 

flow is laminar in the vicinity of the airfoil leading edge. Thus any proposed 

model must be capable of dealing with laminar, transitional and turbulent flow. 

The turbulent flow problem including laminar and transitional regions has been 

treated approximately but quite successfully for the simpler problem of boundary 

layer flows by McDonald and Fish (Ref. 47), Shamrtith and McDonald (Ref. 48) and 

Kreskovsky, Shamroth and McDonald (Ref. 49). These investigators applied an 

integral form of the turbulence kinetic energy equation in conjunction with the 

16 



boundary layer mean flow momentum equations to predict a wide variety of flows 

in both forward and reverse transition. As shown in Refs. 47-49, the model gives 

excellent agreement between prediction and data for a variety of typical test 

cases. In an alternative but similar approach Jones and Launder (Ref. 50) and 

Launder and Jones (Ref. 51) used a two-equation turbulence model in predicting 

relaminarizing flows, but did not apply this model to the forward transition 

problem. Application of the model to the forward transition process in boundary 

layers was initiated by Pridden (Ref. 52) who obtained predictions of transitional 

boundary layers (see Launder and Spalding (Ref. 53)). Later the Launder-Jones 

model was applied to the forward transition problem again in boundary layers 

by Quemard and Michel (Ref. 54); however, none of the calculations presented 

in Ref. 54 proceeded successfully through transition. In summary, at the 

initiation of the present effort, calculations through transition in both the 

forward and reverse direction had been made routinely for boundary layer flows 

using an integral form of the turbulence kinetic energy equation (Refs. 47-49); 

however, questions remained concerning the problem of predicting transitional 

flows via the differential equation of turbulence kinetic energy for airfoil 

flow fields. 

The approach taken in the present effort assumes an isotropic turbulent 

viscosity, uT, relating the Reynolds' stress tensor to mean flow gradients. 

(12) 

Using Favre averaging (Ref. 55) the governing equations then are identical to 

the laminar equations with velocity and density being taken as mean variables 

and viscosity being taken as the sum of the molecular viscosity, u, and the 

turbulent viscosity, uT. Originally, it was intended that the turbulent 

viscosity be obtained from the two-equation turbulence model in which the 

turbulence kinetic energy, k, and turbulence dissipation rate, E, were taken as 

dependent variables. This model has been used by several investigators (e.g., 

Refs. 50 and 51) for fully turbulent flow fields and, in fact, has been 

utilized successfully by Gibeling, McDonald and Rriley (Ref. 56) in a study of 

turbulent cornbusting flows made using a reacting flow version of the same 

numerical procedure applied in the present investigation. 
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The equations governing the development of k and E have been given by 

several authors (e.g., Launder and Spalding (Ref. 53)) and in Cartesian 

coordinates are given as 

w bpuk - ,-. 
at + ax +?i$ + q(P+$)$] 

dUi auk 
(- ) 

dUi ak “2 dk’12 
+ cc1 ax, + dx, ax, --wyjy-3y 1 j (13a) 

(13b) 

In Eqs. (13a) and (13b) ok and ot are Prandtl numbers for k and E respectively 

and C 1 and C 2 are empirical functions. The equations are discussed in some 

detail in Ref. 53 and this discussion will not be repeated here. The turbulent 

viscosity is related to k and E via the Prandtl-Kolmogorof constitutive equation 

PT = pC,k’ /E 

(14) 

In the present analysis the following values were assumed 

-.----- _.. 

uc = 1.3 

ck = 1.0 

c, q 1.55 

(15) 



For fully developed turbulent flow Cu = -09 and C2 = 2.; in relaminarizing flows 

Jones and Launder (Ref. 50) give 

CL’ = 0.09exp [-2.5(1. +R,/SO.)] 

C, - 2.0{1.0-0.3 [ expt-R:)]} 
(16) 

however, although this expression has given good results in relaminarizing 

flows, it has not led to'the successful prediction of flows undergoing forward 

transition in Ref. 54. Therefore, it was felt if a transition model were to be 

obtained, Eq. (16) should be modified and the successful integral turbulence 

energy procedure of (Refs. 47-49) was used for guidance. This procedure 

utilizes a turbulence function a 1 where 

a, = cp2 /2 

(17) 

and a 1 is taken as a function of a turbulence Reynolds number of the form 

a, =aO[ %]/I 1.0 +6.66aO[ $$ -111 

(18) 

where 

aO = .0115 

f( R,) = 100. Rro*= R, I I 

f( R,) = 68 I R, + 614.3 R, 140 (19) 
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and a cubic curve was fit for values of RT between 1 and 40. As previously 

discussed, Ref. 47-49 utilized an integral form of the turbulence kinetic energy 

and therefore Rr was defined as an average value. 

(20) 

In the present effort RT was defined as the local ratio of turbulent to laminar 

viscosity, al was evaluated via Eq. (18), CP related to al via Eq. (17) and 

C2 was evaluated via Eq. (16). 

In the early stages of the present effort the mean flow Navier-Stokes 

equations were solved in conjunction with the partial differential equations 

governing turbulence kinetic energy and turbulence dissipation equations given 

earlier; however, problems arose with the solution. The problem areas were 

those regions in which the flow was expected to be laminar or transitional 

rather than fully turbulent. Regions of this type are found far from the 

airfoil and in the vicinity of the airfoil leading edge. One problem which 

arose concerned evaluation of turbulent viscosity via Eq. (14). In regions 

where k is small, PT should be small; however, in terms of the model p T depends 

on the ratio of k2/c and therefore regions of small k can exist simultaneously 

with regions of large pT if the predicted value of E is small enough. Since 

regions of small turbulence kinetic energy should coincide with regions of 

small turbulent viscosity by definition, such behavior is unacceptable. 

The problem of ensuring small turbulent viscosities far from the airfoil 

regardless of the values of k and E was solved by modifying the viscosity law 

so that 

(21) 

for ys> 6 
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The use of Eq. (21) ensured small turbulent viscosities far from the airfoil. 

The second problem, the region near the airfoil leading edge, proved much more 

troublesome. In this region the calculation led to negative values of k and/or 

E and then became unstable. It is possible that this behavior either represents 

a flaw in the model for laminar and transitional flow or is related to starting 

the solution from an unrealistic initial k--E profile. The physical source of 

the problem has not yet been determined, although the numerical problems clearly 

reside in a stiffness of the governing partial differential equation (McDonald, 

Ref. 57). Because of the difficulties encountered, the two-equation model was 

not pursued further in this effort but rather a model combining the turbulence 

kinetic energy equation with a specified length scale was used. 

In this model the length scale was taken as a minimum value of two lengths; 

a wall length and a wake length. The wall length was assumed to be given by a 

conventional wall damped Prandtl's mixing length, viz 

fl = ~yt(l - e-y.+'27) 

(22) 

with a maximum value of 0.09 6. In Eq. (22) K is the von Karman constant taken 
+ 

as 0.43, y, is the dimensionless distance from the airfoil surface and 6 is the 

boundary layer thickness. The wake length scale was taken as 2 = .056 where 6 

is the wake thickness. Rather than update the boundary layer wake thickness 

at each time step, for the present the analysis assumed the boundary layer 

thickness over the first ten per cent chord region to be given by 

8 = k, xl” + k, 
(23) 

and over the last eighty percent chord to be given by 

(24) 

where kl, k2 and k3 were chosen at convenient program restart time steps to fit 
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the generated velocity solution. The two 6 formulations were smoothly joined 

in a blending region, 0.10 (x/c 2 0.20. Although a step-by-step update of 6 

based upon the calculated velocity or shear stress field would be preferable, 

in the interim the present approach assures a smooth variation of 6 with 

distance along the chord and is considered acceptable for the present demonstra- 

tion. It is anticipated that in subsequent work the local value of the boundary 

layer thickness will be used and the present strategy was used simply to avoid 

possible numerical problems arising from the determination and use of a time 

instantaneous boundary layer thickness. 

When applying the turbulence kinetic energy equation with a specified length 

scale, the turbulent viscosity appearing in the turbulence kinetic energy source 

term, pT(aui/axk+auk/axi)aui/~xk, is replaced by Eq. (21) and the dissipation 

rate E is expressed in terms of k and e by 

k 312 

E = c 3’4 ~ 

P 1 

(25) 

The resulting equation then is solved to predict the turbulence kinetic energy 

field. 

The Numerical Procedure 

The numerical procedure used to solve the governing equation is a 

consistently split linearized block implicit scheme originally developed by 

Briley and McDonald (Ref. 39) and embodied in a computer code termed.MINT, 

an acronym for Multi-dimensional Implicit Nonlinear Time-dependent. The basic 

algorithm was further developed and applied to both laminar and turbulent duct 

flows by Briley, McDonald and Gibeling (Ref. 58). Subsequently, a three- 

dimensional compressible Navier-Stokes combustor flow analysis employing the 

MINT procedure was developed by Gibeling, McDonald and Briley (Ref. 56) and 

this procedure was then employed by Levy, Shamroth, Gibeling and McDonald 

(Ref. 59) to determine the feasibility for computing a turbulent shock-wave 

boundary layer interaction with an implicit method. More recently Gibeling, 

Shamroth and Eiseman (Ref. 31) have applied the Briley-McDonald scheme to flow 

about a cylinder and an isolated airfoil. Since the scheme has been outlined 
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in detail in several publications available in the open literature, it will not 

be detailed here. Rather only a brief outline of the procedure will be given 

with more detail in the Appendix; the reader interested in further detail is 

referred to Refs. 31, 38 and 58). 

The method can be outlined as follows: the governing equations are replaced 

by an implicit time difference approximation, optionally a backward difference 

or Crank-Nicolson scheme. Terms involving nonlinearities at the implicit time 

level are linearized by Taylor expansion about the solution at the known time 

level, and spatial difference approximations are introduced. The result is 

a system of multidimensional coupled (but linear) difference equations for the 

dependent variables at the unknown or implicit time level. To solve these 

difference equations, the Douglas-Gunn (Ref. 41) procedure for generating 

alternating-direction implicit (ADI) schemes as perturbations of fundamental 

implicit difference schemes is introduced in its natural extension to systems 

of partial differential equations. This technique leads to systems of coupled 

linear difference equations having narrow block-banded matrix structures which 

can be solved efficiently by standard block-elimination methods. 

The method centers around the use of a formal linearization technique 

adapted for the integration of initial-value problems. The linearization 

technique, which requires an implicit solution procedure, permits the solution 

of coupled nonlinear equations in one space dimension (to the requisite degree 

of accuracy) by a one-step noniterative scheme. Since no iteration is required 

to compute the solution for a single time step, and since only moderate effort 

is required for solution of the implicit difference equations, the method is 

computationally efficient; this efficiency is retained for multidimensional 

problems by using ADI techniques. The method is also economical in terms of 

computer storage, in its present form requiring only two time-levels of storage 

for each dependent variable. Furthermore ,,the AD1 technique reduces multi- 

dimensional problems to sequences of calculations which are one-dimensional in 

the sense that easily-solved narrow block-banded matrices associated with one- 

dimensional rows of grid points are produced. Consequently, only these 

one-dimensional problems require rapid-access storage at any given stage of 

the solution procedure, and the remaining flow variables can be saved on 

auxiliary storage devices if desired. 
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The Coordinate System 

The choice and construction of a coordinate system is an important component 

in the successful solution of the isolated airfoil problem. The presence of 

bounding surfaces in a flow field which do not fall upon coordinate lines 

present significant difficulties for numerical techniques which solve the 

Navier-Stokes equations. If a bounding surface (such as the airfoil surface) 

does not fall upon a coordinate line, undue numerical errors may arise in the 

application of boundary conditions and considerable effort may be required to 

reduce these errors to an acceptable level. Although this problem arises in 

both viscous and inviscid flows, it is more severe in viscous flows where 

no-slip conditions on solid walls can combine with boundary condition truncation 

error to produce numerical solutions which are both qualitatively and quanti- 

tatively in error. Thus coordinate systems are sought in which each no-slip 

surface of the specific problem falls on a coordinate line. 

In addition to requiring that no-slip surfaces fall on coordinate lines, 

other considerations constrain the choice of a suitable coordinate system. 

The two most important of these are smoothness of the coordinate system and 

distribution of grid points. Since the governing equations (e.g., see Eq. (10) 

of the present report) contain derivatives of the transformation, any trans- 

formation chosen must have a degree of smoothness and continuity which allows 

accurate representation of these derivatives. Secondly, in viscous flow 

problems different regions have different characteristic length scales and 

thus fine grid resolution must be available in some regions of the flow field 

whereas only relatively coarse resolution need be maintained in other regions. 

For example, in calculating turbulent flow about an airfoil at a chotd Reynolds 

number of 106, grid spacings on the order of 10 -4 chord may be required near 

the airfoil surface whereas spacings of the order of the airfoil chord may be 

permissible in the far field. 0 

In considering possible airfoil coordinate systems, several candidate 

schemes are available. Among these candidates are conformal coordinate systems 

such as that used by Mehta (Ref. 20), systems based upon solution of Poisson's 

equation, and a constructive system (Refs. 31 and 60). Although conformal 

systems are excellent choices when they can be used, their very nature restricts 

their generality and hence they were not considered for the present effort. 
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A more general method is that of Thompson and his coworkers (e.g., Thompson, 

Thames and Mastin (Ref. 36))which solves a Poisson equation to generate 

coordinates. Although this approach is considerably more general than the 

conformal approach, the generation of coordinates by this approach requires 

solution of a partial differential equation and obtaining a converged solution 

of Poisson's equation for general geometry can be a problem (Ref. 36). In 

addition difficulties may be encountered in obtaining a desirable distribution 

of grid points. 

The third approach is that of constructing a coordinate system in which 

the required airfoil is by definition a coordinate line and in which grid 

point placement is specified by the user. Such a procedure was developed 

originally for the isolated airfoil problem by Gibeling, Shamroth and Eiseman 

(Ref. 31) and extended to the cascade problem by Eiseman (Ref. 60); it is this 

procedure which was used in the present calculations. To the authors' knowledge 

the present calculations represent the first successful attempt at solving the 

Navier-Stokes equations about an airfoil using a constructive coordinate system. 

The details of the constructive system are presented in Ref. 31 for an isolated 

airfoil and in Ref. 59 for a cascade. 
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RRSULTS 

NACA 0012 Airfoil at Zero Incidence 

The first calculation presented is for a NACA 0012 airfoil at zero 

incidence. A highly stretched coordinate system was used for the calculations 

with grid spacing normal to the airfoil being of the order of .0005 c (where 

c is the chord) in the vicinity of the airfoil surface and of the order of 0.8 c 

at the outer grid boundary, approximately some three chords from the airfoil 

surface. The coordinate system was constructed using the method described in 

Refs. 31 and 60. The grid, which consisted of 41 x 30 points, extended 

approximately three chords upstream of the airfoil, three chords above and 

below the airfoil and six chords downstream of the airfoil. The dependent 

variables were the Cartesian velocity components, u and v, the density, p, and 

the turbulence kinetic energy, k. The governing equations were taken as the 

continuity equation, the momenta equations, and the turbulence kinetic energy 

equation. The independent variables for the turbulence kinetic energy equation 

were transformed from the Cartesian coordinates, x and y , in the same manner 

as the momenta and continuity equations were transformed from the Cartesian 

to the computational coordinates. 

The calculation was initiated by specifying the inviscid solution throughout 

the flow field; applying zero velocity conditions on the airfoil surface and 

assuming a turbulence kinetic energy field. Boundary conditions were set as 

follows: on the airfoil surface the Cartesian velocities were set to zero and 

the boundary layer approximate transverse momentum equation (ap/an = 0) used. 

At the outer boundary, velocity and density were set to the inviscid.values for 

a Joukowski airfoil of approximately the same thickness whereas at the downstream 

boundary, first derivatives were set to zero along the coordinate direction 

approximately aligned with the free stream. A sketch of the boundaries is 

presented in Fig. 2. The turbulence kinetic energy equation was treated by 

setting, k, equal to a free stream turbulence level of 0.001 at the upstream 

outer boundary and setting the (nearly streamwise) derivative of k equal to 

zero at the downstream boundary. At the airfoil surface the correct condition 

on the turbulence kinetic. energy should be k=O, however, the turbulence kinetic 

energy reaches a maximum very near.the wall and then declines to zero (Ref. 61). 

Rather than try to include enough grid points in the near wall region to define 
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this sharp maximum and the subsequent decrease to zero at the wall an artificial 

boundary condition was applied in the spirit of the so-called wall function 

formulation. This boundary condition takes the form of setting the turbulence 

kinetic energy derivative at the wall equal to zero and thus not defining the 

decrease from the maximum k to the zero k wall condition. Obviously, an 

improved formulation would include enough points in the near wall region to 

adequately define the problem there and such an approach is expected to be 

followed in subsequent efforts. 

The calculation was run in three steps. Initially a spatially varying 

turbulent viscosity field was specified and the mean flow equations were solved 

with these equations. During this, part of the calculation since the transients 

were not of interest the equations were solved with the matrix conditioning 

approach developed by McDonald and Briley (Ref. 62) which results in a spatially 

varying time step. Matrix conditioning considerably accelerates the convergence 

of the mean flow equations to steady state. After the major flow readjustment 

had occurred the mean flow was "frozen" and the turbulence equations were solved. 

Finally all equations were solved and the flow development to steady state 

computed. Using this technique the solution reached convergence in approxi- 

mately 150 time steps. Although other factors may be involved this result 

should be contrasted to the 800 time steps required by Steger (Ref. 34) to reach 

convergence in solving the thin shear layer equations. 

A sketch of the predicted surface pressure distribution is presented in Fig. 

3, which also shows the predictions of Mehta (Ref. 20) for laminar incompressible 

flow at Re 
C 

= 10,000 and the data of Gregory and O'Reilly (Ref. 63) for turbulent 

flow at a Reynolds number of 2.88~10~. In the present calculations the reference 

length, velocity, density, viscosity and temperature were chosen to obtain a 

Reynolds number based on chord of lo6 and a Mach number of approximately 0.2. As 

can be seen in Fig. 3, both predictions are in good agreement with data over the 

forward portion of the airfoil. However, over the last 40% span, the measurements 

indicate substantially more recompression than either analysis predicts and, in 

fact, both analyses show good agreement with each other. 

The suction surface pressure discrepancy between the analyses and the data 

deserves further comment. The trailing edge pressure predictions of Mehta's 

analysis were made with a coordinate grid which concentrated the available grid 

27 



points in the trailing edge as well as the leading edge regions. Thus the 

coordinate system used in the present analysis which obtains relatively high 

resolution in the leading edge region at the expense of some resolution in the 

trailing edge region does not seem to be the source of the discrepancy. However, 

it must be recalled that Mehta (Ref. 20) considered a laminar calculation 

whereas the Gregory and O'Reilly (Ref. 63) data is for turbulent flow. A laminar 

boundary layer is more susceptible to separation than a turbulent one and indeed, 

the prediction of Mehta (Ref. 20) does show separation upstream of the trailing 

edge whereas the data show the boundary layer to remain attached over the entire 

suction surface. Therefore the discrepancy between the data of Ref. 63 and the 

analysis of Mehta could be the result of the computed laminar boundary layer 

separating and modifying the trailing edge pressure distribution. 

The present analysis however considers turbulent flow, but due to grid 

point limitations the boundary layer may not be sufficiently resolved for 

optimum results. Thus either the existing boundary layer resolution or perhaps 

the assumed turbulence model could cause the predicted boundary layer displace- 

ment effects to be larger than actually occur and this would result in a lower 

than expected pressure in the suction surface trailing edge region. This 

possible explanation is given some weight as a result of the second calculation 

presented in the present report. In this second calculation the zero incidence 

airfoil flow field was predicted using a grid having somewhat better resolution 

in the boundary layer region and the result was a higher prediction of trailing 

edge suction surface pressure. This will be discussed subsequently. 

Isovel contours in the immediate vicinity of the airfoil surface for the 

zero incidence NACA 0012 case are presented in Fig. 4. The horizontal axis of 

the plot is x/c which is the dimensionless streamwise distance along the airfoil 

centerline. The vertical axis is the normal distance from the airfcil surface 

Y,IC - A sketch of these quantities is shown in the bottom portion of the 

figure. The contours in the vicinity of the leading edge stagnation point, 

x/c = 0, represent changes in the essentially inviscid velocity along the 

stagnation streamline, however, downstream of the leading edge region, x/c > 0.1, 

the isovels represent the viscous flow region and here the growth of the boundary 

layer is evident. The airfoil trailing edge is located at x/c = 1.0 and down- 

stream of this location the isovels intersect the horizontal axis indicating 

the wake development. 
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Another view of the mean velocity field is shown in Fig. 5 which presents 

velocity profiles at various streamwise locations. The distances x/c and y,/c 

are defined as in Fig. 4 and u/uref is the local velocity component in the x- 

direction divided by the velocity at upstream infinity. The dimensionless velo- 

city reaches values greater than unity since the inviscid velocity at the edge of 

the boundary layer is greater than the velocity at upstream infinity. Although 
the flow approached a separated state at the trailing edge vicinity, separation 

never actually occurred; this could be due to the turbulent nature of the flow. 

The calculated turbulence kinetic energy contours are presented in Fig. 6. 

The maximum predicted value of turbulence kinetic energy, k = 0.06, occurs at 

x/c = 0.1 and very close to the airfoil surface where the assumed wall function 

for turbulence kinetic energy was applied. Since these high values occur both 

in the wall function region and in the region where the flow was transitional 

(Fig. 7) this maximum value should be viewed with some skepticism. Further 

downstream, the values of k in the vicinity of the wall decreased to values 

between 0.02 and 0.04 which are more in keeping with experiment (Ref. 61). 

Turbulent viscosity isobars are presented in Fig. 7. Figure 7 indicates that 

transition occurs in the region x/c = 0.2 which is somewhat upstream of the 

region noted experimentally by Gregory and O'Reilly (Ref. 63). Further, 

according to Gregory and O'Reilly (Ref. 63) the transition location for flow 

about a NACA 0012 airfoil at Re = lo6 is at x/c = 0.4. However, it must be 
C 

recalled that the present turbulence model was applied without any 'tuning' 

and, hence the agreement is considered satisfactory for the present. As in 

Fig. 4, x/c = 1.0 represents the airfoil trailing edge and the wake is found 

downstream of this point. 

The second case considered is again for an airfoil at zero incidence, 

however, in this case flow about a full airfoil rather than flow about half an 

airfoil with use of symmetry conditions was calculated. A constructive grid 

having 81 x 30 grid points was used. The flow conditions for this second case 

were a Reynolds number based upon chord of lo6 and a Mach number of .14.7. In 

addition, the computational grid for this case was more highly stretched than 

for the previous case with the first grid point off the airfoil surface being 

located a distance of 0.0002 chords from the surface. When the full airfoil 

calculation is considered a major advantage of the constructive coordinate 
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grid becomes apparent. The Poisson generated coordinate system (Ref. 27) gives 

coordinate lines with discontinuous slope at the geometric centerline of the 

coordinate system emanating from the airfoil trailing edge, see Fig. 8, (the 

branch cut); the constructive coordinate system does not contain this problem. 

Therefore, performing a full airfoil calculation integration across the wake 

from the lower to upper boundary including the centerline point (e.g., line a-b 

on Fig. 8) presents no difficulty with the present coordinates. Although such 

a procedure is possible in a Poisson generated coordinate system, its implemen- 

tation would require using a device such as one-sided differencing at the 

centerline or not solving the equations on the centerline but determining values 

there by extrapolation. One-sided differencing may lead to numerical 

difficulties and the extrapolation technique is equivalent to treating the 

centerline as a boundary and applying boundary conditions along this interior 

line. With either of these two devices the centerline would be treated in a 

special manner and, therefore, both of these devices are expected to be inferior 

to simply treating the centerline points as interior points in the manner of 

the present analysis. 

The full airfoil calculation was made with function conditions applied for 

density and the two velocity components along the outer boundary line d-e-f-g-h. 

As for the symmetric half airfoil calculation the values were taken as the flow 

field values appropriate for a Joukowski airfoil of equal thickness. As in the 

first calculation the outer boundary was approximately three chords away from 

the airfoil surface. No slip conditions and zero density gradient conditions 

were applied at the airfoil surface and zero first derivative boundary con- 

ditions along the 'streamwise' direction for both velocity and density were 

applied at the outflow boundary. 

The results of the full airfoil calculation are very similar to those of 

the half airfoil calculation presented in Figs. 3-7. The flow field is 

predicted to be symmetric about the centerline as is expected. The surface 

static pressure distribution shown in Fig. 9 is only slightly different from 

that shown in Fig. 3. The major difference being the higher pressure in the 

suction surface trailing edge region; this has been discussed previously and 

may be a result of the better boundary layer resolution in the full airfoil 
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calculation. Likewise the velocity, turbulence energy and turbulent viscosity 

fields differed little from those previously presented. 

The third example considered is a NACA 0012 airfoil at 6" incidence. Again 

the Reynolds number based upon chord was lo6 and the Mach number was 0.147. 

As in the previous example an 81x30 grid was used. In running the calculation 

some difficulty was experienced in bringing the transverse velocity, w, 

smoothly into the outer specified function boundary condition in the region 

d-e' and g'-h of Fig. 8. The initial attempt to resolve this problem focused 

upon the transverse grid which was very widely spaced in the vicinity of the 

outer loop, d-e'-f-g'-h. A new grid was constructed which sacrificed some 

minor amount of resolution in the boundary layer and even more resolution in 

the flow midregion to obtain better resolution near the outer loop. In this 

grid the first grid point off the airfoil was located a distance 0.00033 from 

the airfoil surface. Although this procedure decreased the oscillations in 

the w-component of velocity, it did not eliminate them; hence a second modifi- 

cation was made. In this modification the function boundary conditions on p, 

u and w along lines d-e and g-h (see Fig. 8) were replaced by specified static 

pressure and zero first derivatives of u and w; this set of boundary conditions 

removed the observed oscillations and the calculation proceeded without 

difficulty. Further this new set of boundary conditions appear more desirable 

from physical considerations. It should also be noted that the flexibility 

of the constructive coordinate in obtaining some desired mesh proved a very 

desirable property. 

The predicted pressure distribution is compared with the data of Gregory 

and O'Reilly (Ref. 63) taken for a Reynolds number 2.8~10~ in Fig. 10. As 

shown in Fig. 10 the major discrepancy between data and analytic prediction 

occurs in the leading edge region where the analysis fails to predict the 

correct suction peak. This discrepancy is at least partially a result of grid 

resolution. The strong favorable pressure gradient region leading to the 

suction peak occurs in a very limited region of the flow field between x/c =O 

and x/c = 0.01. This region extends over only one percent of the airfoil chord 

and only one tenth of one percent of the entire grid extent. In interest of 

computer run time economy the grid was limited to 81x30 points (a total of 2430 

grid points) and even though points were packed into the leading edge region, 
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only four pseudo-radial lines were placed within the favorable pressure grad- 

ient region. Thus even with a total of 2430 grid points and severe leading 

edge grid packing, resolution in this region was marginal. It is expected 

that increased resolution would result in better agreement with the data. 

A second area of moderate disagreement occurs in the trailing edge region; 

this results from differing predictions of trailing edge pressure. The 

discrepancy between predicted and measured trailing edge pressure also occurred 

in the zero incidence case and has been discussed previously in some detail. 

The lift distribution presented in the lower portion of Fig. 10 shows excellent 

agreement between data and analysis except in the region of the suction peak 

where as mentioned above the probable cause of disagreement is grid point 

resolution. 

In regard to other aspects of the flow field the predicted suction surface 

transition location occurs at xT/c M 0.08. The data of Gregory and O'Reilly 

gives xT ~0.04 for a Reynolds number of 2.8 x lo6 and xT/c x0.08 for a 

Reynolds number of 1.48 x 106. Thus the predicted transition location is in 

excellent agreement with data. The transition location predicted on the pressure 

surface is xT/c ~0.30; thus the pressure surface boundary layer has a consider- 

ably longer laminar run than does the suction surface boundary layer. This 

result is as expected. The flow on the airfoil suction surface is subject to 

a very strong acceleration as it proceeds from the stagnation point around the 

airfoil leading edge and the large acceleration with resultant generation of 

large velocities is shown in Fig. 11. As the flow proceeds downstream, it 

encounters an adverse pressure gradient leading to a thickening of the boundary 

layer, typical adverse pressure boundary layer profiles and eventually separation 

at x/c a.85. The appearance of separation is at variance with the data of 

Gregory and O'Reilly (Ref. 63) taken at slightly higher Reynolds number which 

shows no separation at this incidence angle. However, the predicted separation 

region occurs on the very aft part of the airfoil and remains very small, thus 

having only a minor effect upon the generated pressure distribution. The 

difference between the analytic prediction of separation and the data may be due 

to any of several possibilities. Since the calculation was run at a slightly 

lower Reynolds number than the data, the difference may be due to Reynolds number 

effects. However, it is more likely that the discrepancy is tied to the 
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turbulence model; modification of the turbulence qodel structural functions 

could delay separation. Nevertheless, despite this difference the comparison 

between analytic prediction and experimental data is good. As is expected, the 

flow on the pressure surface is much less dramatic than that on the suction. 

The pressure surface has no suction peak and the boundary layer on the surface 

never encounters a strong adverse pressure gradient. The result is a well- 

behaved flow with no approach to separation. The suction surface and pressure 

surface boundary layers merge at the trailing edge where the wake is seen to be 

highly asymmetric. 

A detailed picture of the flow in the leading edge region is presented in 

Fig. 12. In this figure the splitting of the flaw as it encounters the airfoil, 

the appearance of the front stagnation and the large acceleration as the flow 

proceeds around the leading edge are all clearly pictured. 

The turbulence energy field on both the suction and pressure surfaces is 

shown in Fig. 13. Since the regions of high turbulence energy are concentrated 

very near the airfoil surface, they are presented as lines of constant k on a 

plot of distance along airfoil surface to distance from airfoil surface as was 

done in Figs. 4, 6 and 7. The field shows distinctly different characteristics 

on the two different surfaces. On the suction surface large turbulence energies 

are generated in the region of the high adverse pressure gradient. However as 

the boundary layer proceeded in the high adverse pressure gradient region and 

approached separation, x/c > 0.4, the turbulence energy drops as a result of 

the low transverse velocity gradients associated with nearly separated boundary 

layers which can no longer produce turbulent energy. In fact on the aft portion 

of the airfoil suction surface the maximum turbulence energy appears'away from 

the wall. The turbulence energy field on the pressure surface exhibits a 

different character. Although the field here does not generate as large k's 

as on the suction surface, relatively high turbulence levels are present over 

the entire surface flow field. Again this is to be expected since the 

boundary layer in this region does not approach separation. 
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CONCLUDING REMARK3 

The present report describes a solution of the compressible, turbulent 

isolated airfoil flow field problem. The analysis used solves the full 

compressible Navier-Stokes equation via the consistently split linearized 

block implicit procedure of Briley and McDonald in a body-fitted constructive 

coordinate system. The constructive system has the airfoil surface as a 

coordinate line by definition and is capable of obtaining high grid resolution 

at user-specified regions of the flow field. To the author's knowledge the 

present results represent the first solution of the airfoil flow problem using 

the Navier-Stokes equations in conjunction with a constructive coordinate 

system. 

Several forms of the Navier-Stokes equations are presented as possible 

candidates to obtain an accurate and efficient solution. Based upon a variety 

of considerations, including sample calculations of low Reynolds number flow 

about a circular cylinder, it is determined that the strong conservation form 

of the equations should not,be solved; rather a form in which the geometric 

factors are not in conservative form is deemed superior for this problem. 

Since high Reynolds number flow is the flow of interest, the present effort 

proposes a turbulence model based upon the turbulence kinetic energy equation 

with structural functions specified so as to be valid for laminar, transitional 

and fully turbulent flow. When used in conjunction with the mean flow equation, 

the model predicts a turbulence kinetic energy field, as well as a mean flow 

field. The analysis has been applied to big!> Reynolds number, subsonic Mach 

number flow about a NACA 0012 airfoil. At zero incidence the analysis gives 

a good comparison between the predicted airfoil static pressure distribution 

and experimental data. The only region which contains a discrepancy is the 

trailing edge region where grid resolution or turbulence modelling effects may 

give larger viscous displacement effects than were observed experimentally. 

In addition, the mean flow and turbulence energy results are as expected. 

Regions of laminar flow appear in the airfoil leading edge region and in regions 

distant from the airfoil. Transitional flow occurs near the airfoil surface in 

the quarter chord region and turbulent flow is predicted over the aft part of 

the airfoil and in the airfoil wake. 
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At 6 deg. incidence agreement between predicted and measured pressure 

distributions was again good except in the leading edge region where grid 

resolution problems prevented an accurate prediction of the suction peak. 

The predicted suction surface transition point was in excellent agreement 

with data and the mean and turbulence fields were qualitatively as expected. 

Although some problems remain, particularly in regard to grid resolution 

and turbulence modelling, the results of the present analysis clearly show 

the capability of predicting the high Reynolds number isolated airfoil flow 

field in a constructive coordinate system including turbulence effects. 
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APPENDIX - THE NUMERICAL METHOD 

Linearization Technique 

A number of techniques have been used for implicit solution of the following 

first-order nonlinear scalar equation in one dependent variable $(x,t): 

d+/St = F(+) c&t+) /dx 

(Al) 

Special cases of Eq. (Al) include the conservation form if F(9) = 1, and quasi- 

linear flow if G(4) = 4. Previous implicit methods for Eq. (Al) which employ 

nonlinear difference equations and also methods based on two-step predictor- 

corrector schemes are discussed by Ames (Ref. 64, p. 82) and von Rosenburg 

(Ref. 65), p. 56). One such method is to difference nonlinear terms directly 

at the implicit time level to obtain nonlinear implicit difference equations; 

these are then solved iteratively by a procedure such as Newton’s method. 

Although otherwise attractive, there may be difficulty with convergence in the 

iterative solution of the nonlinear difference equations, and some efficiency 

is sacrificed by the need for iteration. An implicit predictor-corrector 

technique has been devised by Douglas and Jones (Ref. 66) which is applicable 

to the quasilinear case (G = 0) of Eq. (Al). The first step of their procedure 

is to linearize the equation by evaluating the non-linear coefficient as F($“) 

and to predict values of $J n+1/2 using either the backward difference or the 

Crank-Nicolson scheme. Values for @n+l are then computed in a similar manner 

using F(+n+1’2) and the Crank-Nicolson scheme. Gourlay and Morris (Ref. 67) 

have also proposed implicit predictor-corrector techniques which can’be applied 

to Eq. (Al). In the conservative case (F=l), their technique is to define 

;(I$) by the relation G(4) 
. 

= $G($) when such a definition exists, and to evaluate 

G( gn+l) using the values for $J n+l computed by an explicit predictor scheme. 

With G thereby known at the implicit time level, the equation can be treated as 

linear and corrected values of 0 n+l are computed by the Crank-Nicolson scheme. 

A technique is described here for deriving linear implicit difference 

approximations for nonlinear differential equations. The technique ie based 

on an expansion of nonlinear implicit terms about the solution at the known time 
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level, tn, and leads to a one-step, two-level scheme which, being linear in 

unknown (implicit) quantities, can be solved efficiently without iteration. 

This idea was applied by Richtmyer and Morton (Ref. 68, p. 203) to a scalar 

nonlinear diffusion equation. Here, the technique is developed for problems 

governed by t nonlinear equations in II dependent variables which are 

functions of time and space coordinates. Although the present effort concen- 

trates upon two spatial dimensions and time, the technique will be described 

for the three-dimensional, unsteady equations. 

The solution domain is discretized by grid points having equal spacings 

in the computational coordinates, Ay l, AY2 and Ay3 12 in the y , y and y 3 

directions, respectively, and an arbitrary time step, At. The subscripts 

I, j, k and superscript n are grid point indices associated with y', y2, y3 

and t, respectively, and thus 4" 3 
i,j ,k 

denotes O(y:, Y;. Yk’ 2.3. It is 

assumed that the solution is known at the n level, t", and is desired at 

the (n+l) level, tn+'. At the risk of an occasional ambiguity, one or more 

of the subscripts is frequently omitted, so that gn is equivalent to 4 n 
i,j ,k' 

Although present attention is focused on the compressible Navier-Stokes 

equations, the numerical method employed is quite general and is formally 

derived for systems of governing equations which have the following form: 

sH(+)/& = a(+) +s(+) 

(A21 

where 0 is a column vector containing t dependent variables, H and S are 

column vector functions of 4, and a 1 s a column vector whose elements are 

spatial differential operators which may be multidimensional. The generality 

of Eq. (A2) allows the method to be developed concisely and permits various 

extensions and modifications (e.g., noncartesian coordinate systems; turbulence 

models) to be made more or less routinely. It should be emphasized, however, 

that the Jacobian aH/a$ must usually be nonsingular if the AD1 techniques as 

applied to Eq. (A2) are to be valid. A necessary condition is that each 

dependent variable appear in one or more of the governing equations as a time 

derivative. An exception would occur if for instance, a variable having no time 
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derivative also appeared in only one equation, so that this equation could be 

decoupled from the remaining equations and solved 5 posterior1 by an alternate 

method. As a consequence, the present method is not directly applicable to the 

incompressible Navier-Stokes equations except in one-dimension, where AD1 

techniques are unnecessary. For example, the velocity-pressure form of the 

incompressible equations has no time derivative of pressure, whereas the 

vorticity-stream-function form has no time derivative of stream function. For 

computing steady solutions, however, the addition of suitable "artificial" time 

derivatives to the incompressible equations, as was done in Chorin's (Ref. 69) 

artificial compressibility method, would permit the application of the present 

method. Alternatively, a low Mach number solution of the compressible equations 

can be computed. 

The linearized difference approximation is derived from the following 

implicit time-difference replacement of Eq. (A2): 

W n+‘- H”)/Af =+I (j?+’ 1 +s”+‘]+(l-@[a (+“)+S”] 

(A3) 

where, for example, H n+l 5 H(+n+l). The form of a and the spatial differencing 

are as yet unspecified. A parameter B(0 < B < 1) has been introduced so as to - - 
permit a variable centering of the scheme in time. Equation (A3) produces a 

backward difference formulation for R = 1 and a Crank-Nicolson formulation for 

f3 = l/2. 

The linearization is performed by a two-step process of expansion about the 

known time level tn and subsequent approximation of the quantity (a$/at)"At, 

which arises from chain rule differentiation, by ($ n+l-p). The result is 

H “+’ = H” +(dH/d+)” (+“+‘-+‘) + O(Atj2 

S “+‘=s”+(dS/d+)” (+“+I-+“I +dAtj2 

(A44 

U4b) 
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a(+“+‘) = >(+n)+(dWd+r(+n+‘-+n)+O(A+)2 

(A4c) 

The matrices aH/a$ and as/a@ are standard Jacobians whose elements are 

defined, for example, by (aH/a@)qr z aHq/a$ . r The operator elements of the 

matrix a>/ag are similarly ordered, i.e., (aa/adjqr -aaq/aOr; however, the 

intended meaning of the operator elements requires some clarification. For the 
th 

9 row, the operation (a3q/wn (+"+l - 43 is understood to mean that 

Ia/ataq~4(x,Y,2bt)i I" At is computed and. that all occurrences of 
n+l 

(wpt)" 
arising from chain rule differentiation are replaced by (9r - 4$)/b. 

After linearization as in Eqs. (A4), Eq. (A3) becomes the following linear 

implicit time-differenced scheme: 

(d”“/d###‘“+’ -4”) /At =3(4”, +S” + p (dlb /d4 + ss”/d4)(4”+‘-4”) 

(A5) 

Although H n+l is linearized to second order in Eq. (A4), the division by At in 

Eq. (A3) introduces an error term of order At. A technique for maintaining 

formal second-order accuracy in the presence of nonlinear time derivatives is 

discussed by McDonald and Briley (Ref. 70), however, a three-level scheme 

results. Second-order temporal accuracy can also be obtained (for S = l/2) by 

a change in dependent variable to @ E H(4)., provided this is convenient, since 

the nonlinear time derivative is then eliminated. The temporal accuracy is 

independent of the spatial accuracy. 

On examination, it can be seen that Eq. (A5) is line'ar in the quantity 

t+ 
n+l - $") and that all other quantities are either known or evaluated at the 

n level. Computationally, it is convenient to solve Eq. (A5) for ($ n+l 
- p-1 

rather than I$ n+l . This both simplifies Eq. (A5) and reduces roundoff errors, 

since it is presumably better to compute a small O(At) change in an O(1) 

quantity than the quantity itself. To simplify the notation, a new dependent 

variable $ defined by 

fk4-4” (A6-1 
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is introduced, and thus $I n+l 
= Q 

n+l 
- A and en=O. It is also convenient 

to rewrite Eq. (A5) in the following simplified form: 

(A+At f )9”? = At [a (4")+S"] 

MaI 

where the following symbols have been introduced to simplify the notation: 

A= d~“/d’#‘-Pat(ds”/d+) 

fz -p(d a/d+) 

Mb) 

(A7c) 

It is noted that A$> is a linear transformation and thus P(O) = 0. Further- 

more, if 334) is linear, then PC+) = -S>(Q). 

Spatial differencing of Eq. (A7a) is accomplished simply by replacing 

derivative operators such as alay', a 2/ayiayi by corresponding finite differ- 

ence operators, Di, i. D2 Henceforth, it is assumed that 2 and P have been 

discretized in this manner, unless otherwise noted. 

Before proceeding, some general observations seem appropriate. The fore- 

going linearization technique assumes only Taylor expandability, an assumption 

already implicit in the use of a finite difference method. The governing 

equations and boundary conditions are addressed directly as a system of coupled 

nonlinear equations which collectively determine the solution. The‘approach 

thus seems more natural than that of making ad hoc linearization and decoupling -- 
approximations, as is often done in applying implicit schemes to coupled and/or 

nonlinear partial differential equations. With the present approach, it is not 

necessary to associate each governing equation and boundary condition with a 

particular dependent variable and then to identify various "nonlinear 

coefficients" and "coupling terms" which must then be treated by lagging, 

predictor-corrector techniques, or iteration. The Taylor expansion procedure 

is analogous to that used in the generalized Newton-Eaphson or quasi-linearization 

40 



methods for iterative solution of nonlinear systems by expansion about a known 

current guess at the solution (e.g., Bellman 6 Ralaba, Ref. 71). However, the 

concept of expanding about the previous time level apparently had not been 

employed to produce a noniterative implicit time-dependent scheme for coupled 

equations, wherein nonlinear terms are approximated to a level of accuracy 

commensurate with that of the time differencing. The linearization technique 

also permits the implicit treatment of coupled nonlinear boundary conditions, 

such as stagnation pressure and enthalpy at subsonic inlet boundaries, and in 

practice, this latter feature was found to be crucial to the stability of the 

overall method (Ref. 40). 

Application of Alternating-Direction Techniques 

Solution of Eq. (A7a) is accomplished by application of an alternating- 

direction implicit (ADI) technique for parabolic-hyperbolic equations. The 

original AD1 method was introduced by Peaceman and Rachford (Ref. 72) and 

Douglas (Ref. 73); however, the alternating-direction concept has since been 

expanded and generalized. A discussion of various alternating-direction 

techniques is given by Mitchell (Ref. 74) and Yanenko (Ref. 39). 

The present technique is simply an application of the very general 

procedure developed by Douglas and Gunn (Ref. 41) for generating AD1 schemes 

as perturbations of fundamental implicit difference schemes such as the 

backward-difference or Crank-Nicolson schemes. 

For the present, it will be assumed that aw contains derivatives of 

first and second order with respect to y', y2 3 
and Y , but no mixed derivatives. 

In this case, a can be split into three operators, 
12 

a,,a,,>, associated 

with the y , y and y 3 coordinates and each having the functional form 

8, = 4($, a/ayi, a2/ay%yi). Equation (A7a) then becomes _ 

[A+At(P, +P, + f, )I$“+‘= At[(a, +a2 +a,,4”+sn] 
(A81 

Recalling that l((JI") = 0, the Douglas-Gunn representation of Eq. (A8) can be 

written as the following three-step solution procedure: 
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(A+Atf, )&A+[( 3, +a, + 3,)+“+S”1 

(A+At 12)S” =A+ l Wb) 

(&+At f3),“+’ =A*‘* WC) 

* ** 
where $ and $ are intermediate solutions. It will be shown subsequently 

that each of Eqs. (A9) can be written in narrow block-banded matrix form and 
** 

solved by efficient block-elimination methods. If +* and JI are eliminated, 

Eqs. (A9) become 

(A+At 1,. )A-‘(A+At 1, )A?A+At l3 )JI”+‘= At + a2 + 3,) 4”+s” I 
(AlO) 

If the multiplication on the left-hand side of Eq. (AlO) is performed, it becomes 

apparent that Eq. (AlO) approximates Eq. (A8) to order (At)2. Although the 

stability of Eqs. (A9) has not been established in circumstances sufficiently 

general to encompass the Navier-Stokes equations, it is often suggested (e.g., 

Richtmyer h Morton, Ref. 68, p. 215) that the scheme is stable and accurate under 

conditions more general than those for which rigorous proofs are available. 

This latter notion was adopted here as a working hypothesis supported by favor- 

able results obtained in actual computations (e.g., Ref. 38). 

A major attraction of the Douglas-Gunn scheme is that the intermediate 

solutions .JI 
* ** 

and J, 'are consistent approximations to $n+l . Furthermore, 
** 

for steady solutions, JI" = ICI* = $ = $n+l independent of At. Thus, physical 

boundary conditions for JI n+l can be used in the intermediate steps without a 

serious loss in accuracy and with no loss for steady solutions. In this respect, 

the Douglas-Gunn scheme appears to have an advantage over locally one-dimensional 

(LOD) or "splitting" schemes, and other schemes whose intermediate steps do not 

satisfy the consistency condition. The lack of consistency in the intermediate 

steps complicates the treatment of boundary conditions and, according to Yanenko 

42 

I, ,,, . . . . .-.--.-.--.- 
..- I ..I---.----..,, _-.. , . . 



I - 

(Ref. 39, p. 33), does not permit the use of asymptotically large time steps. 

It is not clear that this advantage of the Douglas-Gunn scheme would always 

outweigh other benefits which might be derived from an alternative scheme. 

However, since the AD1 scheme can be viewed as an approximate technique for 

solving the fundamental difference scheme, Eq. (A7a), alternate techniques can 

readily be used within the present formulation. 

It is worth noting that the operator 3 can be split into any number of 

components which need not be associated with a particular coordinate direction. 

As pointed out by Douglas and Gunn (Ref. 41), the criterion for identifying 

sub-operators is that the associated matrices be "easily solved" (i.e., narrow- 

banded). Thus, mixed derivatives can be treated implicitly within the MI 

framework, although this would increase the number of intermediate steps and 

thereby complicate the solution procedure. Finally, only minor changes are 

introduced if, in the foregoing development of the numerical method, H,a, and 

S are functions of the spatial coordinates and time, as well as 0. 

Solution of the Implicit Difference Equations 

Since each of Eqs. (A9) is implicit in only one coordinate direction, the 

solution procedure can be discussed with reference to a one-dimensional problem. 

For simplicity, it is sufficient to consider Eq. (A9a) with a2,a3 % 0. 

Consider the following three-point difference formulas: 

D,4 e [I uA,+(I-a)A+ 1 4/A? =(d4/dir)i+0 AX*+(~-~,~)AX [ I (Alla) 

D,%'=(A+A-)#/(AX)2 = ( db/dZ2)i +O( AT2) 
(Allb) 

for a typical computational coordinate x'. Here, A- : ,+,I - Oi,l* A+ = 9i+1 - O,m 
and a parameter o has been introduced (0 < a c 1) so as to permit continuous - - 
variation from backward to forward differences. The standard central difference 

formula is recovered for a - l/2. 
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As an example, suppose that the q 
th component of 'bx has the form 

(A121 

where F and G are column vector functions having the same but an arbitrary 

number of components; FT denotes the transpose of F. The form of Eq. (A12) 

permits governing equations having any number of first and second derivative 

terms. Then, 

(A131 

It is now possible to describe the solution procedure for Eq. (A9a) for 

the one-dimensional case with a- X given by Eq. (A12) and appropriate difference 

formulas. 2 Because of the spatial difference operators, D; and D; , Eq. (A9a) 
* 

contains &l' $11 
* 

and +i+l; consequently, the system of linear equations 

generated by writing Eq. (A9a) at successive grid points xi can be written in 

block-tridiagonal form (simple tridiagonal for scalar equations, a = 1). The 

block-tridlagonal matrix structure emerges from rewriting Eq. (A9a) as 

(Al41 

where a, b, c are square matrices and d is a column vector, each containing 

only n-level quantities. .When applied at successive grid points, Eq. (A14) 

generates a block-tridiagonal system of equations for $I* which, after appro- 

priate treatment of boundary conditions, can be solved efficiently using 

standard block-elimination methods as discussed by Isaacson and Keller (Ref. 75, 

p. 58). The solution procedure for Eqs. (A9bCc) is analogous to that just 

described for Eq. (A9a). It is worth noting that the spatial difference para- 

meter a can be varied with i or even term by term. For example, an "upwind 

difference" formula can be obtained if a is chosen as 1 or -1 depending on 

the sign of the elements of Fl. 
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Figure 2. - Sketch detailing boundary conditions. 
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Figure 3. - Surface pressure distribution for NACA 0012 airfoil at zero incidence 
(half airfoil calculation). 
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Figure.4. - Isovel contours for NACA 0012 airfoil 
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Figure 6. - Turbulence energy isobars for NACA 0012 
airfoil at zero incidence. 
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Figure 7. - Viscosity isobars for NACA 0012 airfoil at zero incidence. 
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